## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# (1-Adamantyl)(3-aminophenyl)methanone

#### Michal Rouchal,<sup>a</sup> Marek Nečas<sup>b</sup> and Robert Vícha<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and <sup>b</sup>Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic Correspondence e-mail: rvicha@ft.utb.cz

Received 19 October 2011; accepted 1 November 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.073; data-to-parameter ratio = 9.3.

In the crystal sructure of the title compound,  $C_{17}H_{21}NO$ , the molecular packing is stabilized by intermolecular  $N-H\cdots O$  hydrogen bonds and additional weak  $N-H\cdots \pi$  interactions, forming chains that propagate along the *b* axis. Conjugation of the carbonyl group and the benzene ring is rather attenuated due to a twisting of the carbonyl group from the plane of the benzene ring [torsion angle = 27.1 (2)°].

#### **Related literature**

For recent reviews of the biological activity of some adamantane-bearing compounds, see: Ahrén (2009); Ginsberg (2010); Lagoja & De Clercq (2008). For the structures of similar adamantylated aromatic amines, see: Rouchal *et al.* (2009, 2011).



#### **Experimental**

Crystal data

 $\begin{array}{l} C_{17}H_{21}\text{NO} \\ M_r = 255.35 \\ \text{Orthorhombic, } P2_12_12_1 \\ a = 6.4644 \ (1) \\ \text{\AA} \\ b = 8.1978 \ (3) \\ \text{\AA} \\ c = 25.1760 \ (5) \\ \text{\AA} \end{array}$ 

V = 1334.17 (6) Å<sup>3</sup> Z = 4Mo K $\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$  T = 120 K $0.30 \times 0.30 \times 0.20 \text{ mm}$ 

#### Data collection

```
Oxford Diffraction Xcalibur
Sapphire2 diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2009)
T_{\rm min} = 0.998, T_{\rm max} = 1.000
```

Refinement

ł

5 1

1

| $R[F^2 > 2\sigma(F^2)] = 0.030$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.073$               | independent and constrained                                |
| S = 1.04                        | refinement                                                 |
| 672 reflections                 | $\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 80 parameters                   | $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ |

15931 measured reflections

 $R_{\rm int} = 0.016$ 

1672 independent reflections

1531 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C12-C17 ring.

| $D - H \cdot \cdot \cdot A$                                                         | D-H                          | $H \cdot \cdot \cdot A$         | $D \cdots A$                      | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------------------------------------------------|------------------------------|---------------------------------|-----------------------------------|--------------------------------------|
| $ \begin{array}{c} N1 - H1B \cdots O1^{i} \\ N1 - H1A \cdots Cg1^{ii} \end{array} $ | 0.91 (3)<br>0.90 (3)         | 2.10 (3)<br>2.54 (3)            | 3.003 (2)<br>3.316 (18)           | 168 (2)<br>144 (2)                   |
| Symmetry codes: (i) -                                                               | $x + 1, y - \frac{1}{2}, -z$ | $+\frac{1}{2}$ ; (ii) $-x, y$ - | $-\frac{1}{2}, -z + \frac{1}{2}.$ |                                      |

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

Financial support of this work by the Tomas Bata Foundation, the Czech Ministry of Education (project No. MSM 7088352101) and the Internal Funding Agency of Tomas Bata University in Zlin (project No. IGA/6/FT/11/D) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2356).

#### References

- Ahrén, B. (2009). Best Pract. Res. Clin. Endoc. Metab. 23, 487-498.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Ginsberg, A. M. (2010). Drugs, 70, 2201-2214.
- Lagoja, I. M. & De Clercq, E. (2008). Med. Res. Rev. 28, 1-38.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
- Rouchal, M., Kozubková, Z., Nečas, M. & Vícha, R. (2011). Acta Cryst. E67, 02515.
- Rouchal, M., Nečas, M. & Vícha, R. (2009). Acta Cryst. E65, o1018.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

#### Acta Cryst. (2011). E67, o3198 [doi:10.1107/S1600536811046009]

#### (1-Adamantyl)(3-aminophenyl)methanone

#### M. Rouchal, M. Necas and R. Vícha

#### Comment

The adamantane cage represents a widely used substituent in medicinal chemistry. A large number of adamantylated biologically active compounds have been described in the literature. For example, they act as tuberculostatics (Ginsberg, 2010), anti-influenza virus agents (Lagoja & De Clercq, 2008) and as type 2 diabetes medications (Ahrén, 2009). The title molecule belongs to the family of newly prepared adamantane-bearing aromatic amines as promising building blocks for drugs modification.

The asymmetric unit of the title compound consists of a single molecule (Fig. 1). The benzene ring is essentially planar with a maximum deviation from the best plane being 0.025 (16) Å for C14. The adamantane cage consists of three fused cyclohexane rings in classical chair conformations, with C—C—C angles varying within the range 107.40 (12)–110.82 (13)°. The torsion angles describing an arrangement of adamantane scaffold, benzene ring and carbonyl bridge C1–C11–C12–C13 and C2–C1–C11–C12 are 151.40 (15) and 78.16 (17)°, respectively. The molecules are linked into chains parallel to the *b*-axis by N1–H1A···O1 hydrogen bonds (Fig. 2, Table 1). The crystal packing is further stabilized by intermolecular N–H··· $\pi$  interactions.

#### Experimental

(1-Adamantyl)(3-nitrophenyl)methanone (450 mg, 1.65 mmol) was dissolved in 47 cm<sup>3</sup> of warm methanol and 7 cm<sup>3</sup> of hydrochloric acid/water (1/1, v/v) was carefully added. Into the refluxed and well stirred mixture, portions of an iron powder (207 mg, 3.71 mmol) were added successively. The reaction was stopped when TLC indicated the consumption of all starting material. The mixture was diluted with 5% solution of sodium hydroxide (40 cm<sup>3</sup>) and extracted several times with diethyl ether. Combined organic layers were washed with brine, dried over sodium sulfate and evaporated in vacuum. The desired product was obtained after the purification of crude material using column chromatography (silica gel; petroleum ether/ethyl acetate, 1/1, v/v) as a colourless crystalline powder (371 mg, 88%, mp 370–373 K). The crystal used for data collection was grown by spontaneous evaporation from deuterochloroform at room temperature.

#### Refinement

All carbon bound H atoms were placed at calculated positions with distances of 1.00 Å (R<sub>3</sub>CH), 0.99 Å (R<sub>2</sub>CH<sub>2</sub>) and 0.95 Å (C<sub>sp2</sub>H), and were refined as riding with their  $U_{iso}$  set to  $1.2U_{eq}$  of the respective carrier atoms. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically. In the absence of anomalous scattering, Friedel pairs were merged.

Figures



Fig. 1. A thermal ellipsoid plot (50% probability) of the asymmetric unit. H-Atoms are shown as small spheres at arbitrary radii.

Fig. 2. The H-bonded chains of the molecules of title compound arranged parallel to the *b*-axis. H-atoms have been omitted (except for those participating in H-bonds) for clarity. *Cg*1 is centre of gravity of C12—C17. Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x, y - 1/2, -z + 1/2.

### (1-Adamantyl)(3-aminophenyl)methanone

Crystal data

|                                | 2                                                     |
|--------------------------------|-------------------------------------------------------|
| $C_{17}H_{21}NO$               | $D_{\rm x} = 1.271 \ {\rm Mg \ m}^{-3}$               |
| $M_r = 255.35$                 | Melting point: 372 K                                  |
| Orthorhombic, $P2_12_12_1$     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2ac 2ab         | Cell parameters from 10578 reflections                |
| a = 6.4644(1) Å                | $\theta = 3.2 - 27.2^{\circ}$                         |
| <i>b</i> = 8.1978 (3) Å        | $\mu = 0.08 \text{ mm}^{-1}$                          |
| c = 25.1760 (5)  Å             | T = 120  K                                            |
| V = 1334.17 (6) Å <sup>3</sup> | Block, colourless                                     |
| Z = 4                          | $0.30 \times 0.30 \times 0.20 \text{ mm}$             |
| F(000) = 552                   |                                                       |

#### Data collection

| Oxford Diffraction Xcalibur Sapphire2<br>diffractometer                                | 1672 independent reflections                                              |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                                               | 1531 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                                               | $R_{\rm int} = 0.016$                                                     |
| Detector resolution: 8.4353 pixels mm <sup>-1</sup>                                    | $\theta_{\text{max}} = 27.3^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ |
| ω scan                                                                                 | $h = -8 \rightarrow 8$                                                    |
| Absorption correction: multi-scan<br>( <i>CrysAlis RED</i> ; Oxford Diffraction, 2009) | $k = -10 \rightarrow 5$                                                   |
| $T_{\min} = 0.998, T_{\max} = 1.000$                                                   | <i>l</i> = −32→32                                                         |
| 15931 measured reflections                                                             |                                                                           |

#### Refinement

Refinement on  $F^2$ 

Primary atom site location: structure-invariant direct methods

| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.030$ | Hydrogen site location: inferred from neighbouring sites                            |
| $wR(F^2) = 0.073$               | H atoms treated by a mixture of independent and constrained refinement              |
| <i>S</i> = 1.04                 | $w = 1/[\sigma^2(F_o^2) + (0.0342P)^2 + 0.3516P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 1672 reflections                | $(\Delta/\sigma)_{max} < 0.001$                                                     |
| 180 parameters                  | $\Delta \rho_{max} = 0.21 \text{ e} \text{ Å}^{-3}$                                 |
| 0 restraints                    | $\Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$                                |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x          | У            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|--------------|-------------|---------------------------|
| 01  | 0.4200 (2) | 0.29596 (16) | 0.21048 (4) | 0.0309 (3)                |
| N1  | 0.1688 (3) | -0.2699 (2)  | 0.23832 (7) | 0.0344 (4)                |
| C1  | 0.3647 (2) | 0.3819 (2)   | 0.12126 (6) | 0.0170 (3)                |
| C2  | 0.1811 (2) | 0.5018 (2)   | 0.11371 (6) | 0.0190 (3)                |
| H2A | 0.0525     | 0.4396       | 0.1069      | 0.023*                    |
| H2B | 0.1613     | 0.5667       | 0.1465      | 0.023*                    |
| C3  | 0.2246 (2) | 0.6165 (2)   | 0.06674 (6) | 0.0214 (4)                |
| Н3  | 0.1048     | 0.6922       | 0.0619      | 0.026*                    |
| C4  | 0.2554 (3) | 0.5155 (2)   | 0.01592 (6) | 0.0220 (4)                |
| H4A | 0.1285     | 0.4522       | 0.0083      | 0.026*                    |
| H4B | 0.2818     | 0.5892       | -0.0145     | 0.026*                    |
| C5  | 0.4390 (2) | 0.3989 (2)   | 0.02303 (6) | 0.0202 (3)                |
| Н5  | 0.4585     | 0.3339       | -0.0102     | 0.024*                    |
| C6  | 0.6351 (2) | 0.4984 (2)   | 0.03404 (6) | 0.0226 (4)                |
| H6A | 0.6638     | 0.5718       | 0.0037      | 0.027*                    |
| H6B | 0.7547     | 0.4242       | 0.0385      | 0.027*                    |
| C7  | 0.6041 (3) | 0.5995 (2)   | 0.08489 (6) | 0.0213 (4)                |
| H7  | 0.7323     | 0.6638       | 0.0923      | 0.026*                    |
| C8  | 0.5599 (2) | 0.4852 (2)   | 0.13178 (6) | 0.0204 (3)                |
| H8A | 0.5401     | 0.5504       | 0.1645      | 0.025*                    |
| H8B | 0.6799     | 0.4121       | 0.1374      | 0.025*                    |
| С9  | 0.4214 (3) | 0.7162 (2)   | 0.07774 (7) | 0.0234 (4)                |
|     |            |              |             |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H9A  | 0.4488      | 0.7911      | 0.0477      | 0.028*     |
|------|-------------|-------------|-------------|------------|
| H9B  | 0.4028      | 0.7825      | 0.1103      | 0.028*     |
| C10  | 0.3976 (3)  | 0.2828 (2)  | 0.06965 (6) | 0.0184 (3) |
| H10A | 0.5164      | 0.2078      | 0.0741      | 0.022*     |
| H10B | 0.2730      | 0.2164      | 0.0621      | 0.022*     |
| C11  | 0.3283 (2)  | 0.2699 (2)  | 0.16894 (6) | 0.0193 (3) |
| C12  | 0.1869 (2)  | 0.1237 (2)  | 0.16726 (6) | 0.0190 (3) |
| C13  | 0.2376 (3)  | -0.0037 (2) | 0.20158 (6) | 0.0215 (3) |
| H13  | 0.3620      | 0.0023      | 0.2216      | 0.026*     |
| C14  | 0.1096 (3)  | -0.1401 (2) | 0.20729 (6) | 0.0232 (4) |
| C15  | -0.0785 (3) | -0.1424 (2) | 0.17955 (6) | 0.0252 (4) |
| H15  | -0.1727     | -0.2299     | 0.1847      | 0.030*     |
| C16  | -0.1272 (3) | -0.0174 (2) | 0.14471 (6) | 0.0246 (4) |
| H16  | -0.2532     | -0.0220     | 0.1254      | 0.030*     |
| C17  | 0.0044 (3)  | 0.1143 (2)  | 0.13749 (6) | 0.0217 (3) |
| H17  | -0.0290     | 0.1973      | 0.1126      | 0.026*     |
| H1A  | 0.068 (4)   | -0.338 (3)  | 0.2494 (10) | 0.058 (8)* |
| H1B  | 0.286 (4)   | -0.257 (3)  | 0.2582 (9)  | 0.048 (7)* |
|      |             |             |             |            |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|------------|------------|-------------|-------------|-------------|
| 01  | 0.0383 (7)  | 0.0326 (7) | 0.0219 (6) | -0.0106 (7) | -0.0096 (6) | 0.0026 (5)  |
| N1  | 0.0409 (10) | 0.0300 (9) | 0.0324 (8) | -0.0094 (9) | -0.0087 (8) | 0.0115 (8)  |
| C1  | 0.0158 (7)  | 0.0174 (7) | 0.0177 (7) | -0.0016 (7) | -0.0002 (6) | -0.0010 (7) |
| C2  | 0.0167 (7)  | 0.0182 (8) | 0.0221 (7) | 0.0007 (8)  | 0.0027 (6)  | -0.0010 (7) |
| C3  | 0.0161 (8)  | 0.0194 (8) | 0.0287 (8) | 0.0030 (7)  | 0.0011 (6)  | 0.0047 (7)  |
| C4  | 0.0187 (7)  | 0.0246 (9) | 0.0226 (8) | -0.0025 (8) | -0.0022 (6) | 0.0061 (7)  |
| C5  | 0.0191 (8)  | 0.0233 (8) | 0.0181 (7) | 0.0000 (8)  | 0.0009 (6)  | -0.0015 (7) |
| C6  | 0.0164 (7)  | 0.0259 (9) | 0.0255 (8) | -0.0009 (8) | 0.0035 (6)  | 0.0041 (7)  |
| C7  | 0.0164 (7)  | 0.0220 (9) | 0.0254 (8) | -0.0046 (8) | 0.0003 (6)  | 0.0002 (7)  |
| C8  | 0.0176 (7)  | 0.0222 (8) | 0.0215 (7) | -0.0026 (8) | -0.0016 (6) | 0.0000 (7)  |
| C9  | 0.0235 (9)  | 0.0186 (8) | 0.0283 (8) | -0.0039 (8) | 0.0042 (7)  | 0.0017 (7)  |
| C10 | 0.0183 (8)  | 0.0179 (8) | 0.0191 (7) | 0.0001 (7)  | -0.0008 (7) | -0.0019 (6) |
| C11 | 0.0192 (7)  | 0.0204 (8) | 0.0183 (7) | 0.0023 (7)  | -0.0005 (6) | -0.0011 (7) |
| C12 | 0.0211 (7)  | 0.0199 (8) | 0.0160 (7) | -0.0014 (7) | 0.0026 (6)  | 0.0000 (7)  |
| C13 | 0.0214 (7)  | 0.0244 (8) | 0.0186 (7) | 0.0002 (8)  | -0.0007 (6) | -0.0013 (7) |
| C14 | 0.0300 (9)  | 0.0221 (9) | 0.0174 (7) | -0.0010 (8) | 0.0022 (7)  | 0.0005 (7)  |
| C15 | 0.0288 (9)  | 0.0225 (9) | 0.0245 (8) | -0.0081 (8) | 0.0027 (7)  | -0.0014 (7) |
| C16 | 0.0238 (8)  | 0.0270 (9) | 0.0230 (8) | -0.0053 (8) | -0.0035 (7) | -0.0026 (7) |
| C17 | 0.0250 (8)  | 0.0209 (8) | 0.0193 (7) | -0.0004(8)  | -0.0026 (6) | 0.0009(7)   |

### Geometric parameters (Å, °)

| O1—C11 | 1.2208 (19) | С6—Н6В | 0.9900    |
|--------|-------------|--------|-----------|
| N1—C14 | 1.375 (2)   | С7—С9  | 1.530 (2) |
| N1—H1A | 0.90 (3)    | С7—С8  | 1.534 (2) |
| N1—H1B | 0.91 (2)    | С7—Н7  | 1.0000    |
| C1—C11 | 1.529 (2)   | C8—H8A | 0.9900    |

| C1—C8      | 1.543 (2)   | C8—H8B        | 0.9900      |
|------------|-------------|---------------|-------------|
| C1—C10     | 1.547 (2)   | С9—Н9А        | 0.9900      |
| C1—C2      | 1.553 (2)   | С9—Н9В        | 0.9900      |
| С2—С3      | 1.537 (2)   | C10—H10A      | 0.9900      |
| C2—H2A     | 0.9900      | C10—H10B      | 0.9900      |
| C2—H2B     | 0.9900      | C11—C12       | 1.508 (2)   |
| C3—C4      | 1.537 (2)   | C12—C13       | 1.395 (2)   |
| С3—С9      | 1.538 (2)   | C12—C17       | 1.400 (2)   |
| С3—Н3      | 1.0000      | C13—C14       | 1.398 (2)   |
| C4—C5      | 1.535 (2)   | С13—Н13       | 0.9500      |
| C4—H4A     | 0.9900      | C14—C15       | 1.402 (2)   |
| C4—H4B     | 0.9900      | C15—C16       | 1.385 (2)   |
| C5—C6      | 1.532 (2)   | C15—H15       | 0.9500      |
| C5—C10     | 1.535 (2)   | C16—C17       | 1.386 (2)   |
| С5—Н5      | 1.0000      | C16—H16       | 0.9500      |
| C6—C7      | 1.538 (2)   | C17—H17       | 0.9500      |
| C6—H6A     | 0.9900      |               |             |
| C14—N1—H1A | 117.0 (16)  | С9—С7—Н7      | 109.4       |
| C14—N1—H1B | 117.0 (15)  | С8—С7—Н7      | 109.4       |
| H1A—N1—H1B | 120 (2)     | С6—С7—Н7      | 109.4       |
| C11—C1—C8  | 108.68 (12) | C7—C8—C1      | 110.82 (13) |
| C11—C1—C10 | 111.41 (13) | С7—С8—Н8А     | 109.5       |
| C8—C1—C10  | 108.66 (12) | C1—C8—H8A     | 109.5       |
| C11—C1—C2  | 111.02 (12) | С7—С8—Н8В     | 109.5       |
| C8—C1—C2   | 107.40 (12) | C1—C8—H8B     | 109.5       |
| C10—C1—C2  | 109.56 (12) | H8A—C8—H8B    | 108.1       |
| C3—C2—C1   | 109.96 (12) | С7—С9—С3      | 109.08 (13) |
| C3—C2—H2A  | 109.7       | С7—С9—Н9А     | 109.9       |
| C1—C2—H2A  | 109.7       | С3—С9—Н9А     | 109.9       |
| C3—C2—H2B  | 109.7       | С7—С9—Н9В     | 109.9       |
| C1—C2—H2B  | 109.7       | С3—С9—Н9В     | 109.9       |
| H2A—C2—H2B | 108.2       | Н9А—С9—Н9В    | 108.3       |
| C2—C3—C4   | 109.58 (14) | C5—C10—C1     | 109.89 (13) |
| C2—C3—C9   | 109.77 (13) | C5-C10-H10A   | 109.7       |
| C4—C3—C9   | 109.22 (13) | C1            | 109.7       |
| С2—С3—Н3   | 109.4       | C5-C10-H10B   | 109.7       |
| С4—С3—Н3   | 109.4       | C1—C10—H10B   | 109.7       |
| С9—С3—Н3   | 109.4       | H10A—C10—H10B | 108.2       |
| C5—C4—C3   | 109.79 (13) | O1—C11—C12    | 117.21 (14) |
| C5—C4—H4A  | 109.7       | O1—C11—C1     | 119.54 (15) |
| C3—C4—H4A  | 109.7       | C12-C11-C1    | 123.23 (13) |
| C5—C4—H4B  | 109.7       | C13—C12—C17   | 119.21 (15) |
| C3—C4—H4B  | 109.7       | C13—C12—C11   | 115.82 (14) |
| H4A—C4—H4B | 108.2       | C17—C12—C11   | 124.75 (15) |
| C6—C5—C4   | 109.22 (13) | C12—C13—C14   | 121.58 (15) |
| C6—C5—C10  | 109.66 (13) | С12—С13—Н13   | 119.2       |
| C4—C5—C10  | 109.91 (13) | C14—C13—H13   | 119.2       |
| С6—С5—Н5   | 109.3       | N1—C14—C13    | 120.85 (16) |
| С4—С5—Н5   | 109.3       | N1-C14-C15    | 120.94 (17) |

# supplementary materials

| С10—С5—Н5  | 109.3       | C13—C14—C15 | 118.19 (15) |
|------------|-------------|-------------|-------------|
| C5—C6—C7   | 109.25 (13) | C16-C15-C14 | 120.17 (16) |
| С5—С6—Н6А  | 109.8       | С16—С15—Н15 | 119.9       |
| С7—С6—Н6А  | 109.8       | C14—C15—H15 | 119.9       |
| С5—С6—Н6В  | 109.8       | C15—C16—C17 | 121.31 (16) |
| С7—С6—Н6В  | 109.8       | С15—С16—Н16 | 119.3       |
| H6A—C6—H6B | 108.3       | C17—C16—H16 | 119.3       |
| С9—С7—С8   | 109.21 (13) | C16—C17—C12 | 119.34 (15) |
| С9—С7—С6   | 109.85 (13) | С16—С17—Н17 | 120.3       |
| C8—C7—C6   | 109.60 (14) | С12—С17—Н17 | 120.3       |
|            |             |             |             |

Hydrogen-bond geometry (Å, °)

| Cg1 is the centroid of the C12–C17 ring.                                           |             |          |              |                                                                          |
|------------------------------------------------------------------------------------|-------------|----------|--------------|--------------------------------------------------------------------------|
| D—H···A                                                                            | <i>D</i> —Н | H…A      | $D \cdots A$ | $D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$ |
| N1—H1B…O1 <sup>i</sup>                                                             | 0.91 (3)    | 2.10 (3) | 3.003 (2)    | 168 (2)                                                                  |
| N1—H1A…Cg1 <sup>ii</sup>                                                           | 0.90 (3)    | 2.54 (3) | 3.316 (18)   | 144 (2)                                                                  |
| Symmetry codes: (i) $-x+1$ , $y-1/2$ , $-z+1/2$ ; (ii) $-x$ , $y-1/2$ , $-z+1/2$ . |             |          |              |                                                                          |



Fig. 1



